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Abstract. The phenomena of scaling and Bloom-Gilman duality are examined in the context of simple
nonrelativistic and relativistic quantum-mechanical models. These models are shown to scale and to show
the qualitative features of Bloom-Gilman duality. This suggests that these phenomena do not necessarily
require the properties of QCD.

PACS. 12.40.Nn Regge theory, duality, absorptive/optical models – 12.39.Ki Relativistic quark model –
13.60.Hb Total and inclusive cross-sections (including deep-inelastic processes)

1 Introduction

The phenomena of scaling and Bloom-Gilman duality [1]
are displayed by the data from Jefferson Lab [2] displayed
in fig. 1. Here the structure function F p

2 is displayed for a
variety of four-momentum transfers Q2 as a function of the
Nachtmann scaling variable ξ [3,4]. Scaling requires that
the structure functions become independent of Q2 (up to
logarithmic corrections) for sufficiently high Q2. The fit
of the NMC Collaboration for Q2 = 5 GeV2 is shown as
the solid curve in this figure. The scaling region is usually
associated with the disappearance of resonance structure
from the structure function. Clearly, the data up to Q2 =
9 GeV2 continue to show evidence of resonance structure.
However, the data appears to oscillate about the scaling
curve. This phenomenon is called Bloom-Gilman duality.

Bloom-Gilman duality seems to be puzzling since scal-
ing is often assumed to be associated with asymptotic free-
dom which allows quarks to be treated as essentially free
particles at high energies where the QCD coupling be-
comes small. Bloom-Gilman duality shows, however, that
the scaling behavior seems to remain in some average sense
even at relatively low Q2, where the explicitly nonpertur-
bative resonance behavior is still manifest.

However, it has been shown several times that sys-
tems that are not asymptotically free also scale [5–7]. We
will examine some simple quantum-mechanical models in
an effort to explore the minimal quantum-mechanical re-
quirements for scaling and duality.
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Fig. 1. Recent data for the structure function F p
2 from Jeffer-

son Lab [2].

2 Energy-weighted sum rules

First, consider the case of a single nonrelativistic particle
in a potential well with the Schödinger Hamiltonian

H =
p2

2m
+ V (x) . (1)



392 The European Physical Journal A

The longitudinal response function for this case can be
written as

RL(q, ν) =
∫ ∞

−∞

dt

2π
eiνt〈ψ0|eiHte−iq·xe−iHteiq·x|ψ0〉 .

(2)
Applying the momentum shift operator, the response
function can then be written as

RL(q, ν) =
∫ ∞

−∞

dt

2π
eiνt

〈
ψ0

∣∣∣∣eiHte
−i

(
q2

2m + qpz
m +H

)
t

∣∣∣∣ψ0

〉
.

(3)

For us to be able to find a scaling function it is nec-
essary that we be able to find a scaling variable so that
the area, position and width of the structure function are
fixed at large momentum transfers. We can examine the
characteristics of this model by considering the Energy-
Weighted Sum Rules (EWSR) or energy moments of the
response function, defined as

Sn(q) =
∫ ∞

−∞
dν νnRL(q, ν)

=
(

i
∂

∂t

)n 〈
ψ0

∣∣∣∣eiHte
−i

(
q2

2m + qpz
m +H

)
t

∣∣∣∣ψ0

〉
t=0

.

(4)

For a spherically symmetrical ground state the first
three EWSR are then

S0(q) = 1 ,

S1(q) =
q2

2m
= 〈ν〉 ,

S2(q) =
q4

4m2
+

q2

m2
〈ψ0|p2

z|ψ0〉 = 〈ν2〉 . (5)

S1 and S2 can be used to calculate the mean-square width
as

(∆ν)2 = 〈ν2〉 − 〈ν〉2 =
q2

m2
〈ψ0|p2

z|ψ0〉 . (6)

Note that the area is unity as the result of the Coulomb
sum rule, and the position and width depend only on the
interaction through the ground-state wave functions. This
suggests that it should be possible to obtain a scaling func-
tion by the choice of an appropriate scaling variable.

3 y-scaling

The nonrelativistic scaling variable y [8] can be obtained
by considering a noninteracting gas of particles character-
ized by a momentum distribution n(p). The longitudinal
response function in this case is

RL(q, ν) =
∫

d3p

(2π)3
n(p) δ

(
ν +

p2

2m
− (p + q)2

2m

)

=
m

4π2q

∫ ∞

|y|
dpp n(p) =

m

q
F(y) , (7)

where
y =

m

q
ν − q

2
(8)

is the minimum value of the initial momentum and F(y)
is the scaling function.

Solving (8) for ν, substituting it into (3) and rescal-
ing the time variable to τ = q

m t, we obtain the “scaling
function”

F(q, y) =
∫ ∞

−∞

dτ

2π
eiyτ 〈ψ0|ei m

q Hτe−i(pz+ m
q H)τ |ψ0〉 .

(9)

Note that the interaction potential now appears only in
combination with a power of 1

q .
A new set of y-weighted sum rules can be defined as

Sn(q) ≡
∫ ∞

−∞
dy yn F(q, y)

=
(

i
∂

∂τ

)n 〈
ψ0

∣∣∣ei m
q Hτe−i(pz+ m

q H)τ
∣∣∣ψ0

〉
τ=0

.

(10)

The four lowest y-weighted sum rules are:

S0(q) = 1 ,

S1(q) = 〈ψ0|pz|ψ0〉 = 0 ,

S2(q) = 〈ψ0|p2
z|ψ0〉 ,

S3(q) =
〈

ψ0

∣∣∣∣
(

p̂3
z +

m

q
(p̂zV (r)) p̂z

) ∣∣∣∣ψ0

〉
. (11)

Note that the first three of these sum rules show that the
area, position and width of the scaling function are inde-
pendent of q and depend upon the potential only through
the ground-state wave function. The fourth moment con-
tains some interaction dependence. However, this goes as
1
q and will therefore vanish for large q. Indeed, this will
also be the case for all higher moments. This shows that
this kind of model satisfies the conditions for scaling in-
dependent of the potential.

Now consider the example of a confining potential
where only bound states exist. In this case the longitu-
dinal response is

RL(q, ν) =
∑

f

|Ff0(q)|2 δ(ν + E0 − Ef ) , (12)

where Ff0(q) is the inelastic form factor for exciting the
particle from the ground state to some state f . Since all of
the states are infinitely narrow, some kind of smoothing
must be introduced in order to study the scaling properties
of this model. For example, the response function can be
smoothed by folding with a Gaussian of unit area and
fixed width ε to give

R̄L(q, ν) =
1√
πε

∫ ∞

−∞
dν′ e−

(ν−ν′)2
ε2 RL(q, ν′) . (13)

The scaling function for the oscillator potential is
shown in figs. 2 and 3 for a variety of momentum transfers
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Fig. 2. Scaling function for the nonrelativistic oscillator po-
tential with a folding width of ε = 0.1 GeV.

Fig. 3. Scaling function for the nonrelativistic oscillator po-
tential with a folding width of ε = 0.15 GeV.

up to q = 16 GeV for ε = 0.1 GeV and 0.15 GeV, respec-
tively. In each case, the solid line represents the asymp-
totic case calculated assuming that the final-state parti-
cle is free. Figure 2 clearly shows the qualitative features
of Bloom-Gilman duality, while the greater width used
in fig. 3 allows the approach to scaling to be examined.
This rate of approach to scaling is due to the size of the
1
q -dependence of the interaction terms.

4 A relativistic model: the single-particle
Klein-Gordon equation

If we are to approach the usual description of Bjorken
scaling, it is necessary to examine relativistic models. A
simple example of such a model [9,10] is a one-body Klein-
Gordon equation of the form(

p2 + m2 + V 2(x)
) |ψ〉 = E2|ψ〉 . (14)

This model is particularly attractive since the solution to
this equation can be found by rewriting the equation to
resemble a Schödinger equation as(

p2

2m
+

V 2(x)
2m

)
|ψ〉 =

E2 − m2

2m
|ψ〉 . (15)

If we now identify a “nonrelativistic” potential as

VNR(x) =
V 2(x)

2m
(16)

and a “nonrelativistic” energy as

ENR =
E2 − m2

2m
, (17)

the relativistic wave functions are the same as the non-
relativistic wave functions provided that care is taken to
include the necessary energy factors to properly normal-
ize the Klein-Gordon wave functions, and the relativistic
energy is given by

E = ±
√

2mENR + m2 . (18)

It is possible to proceed to construct EWSR in ex-
actly the same manner as in the nonrelativistic case. The
only technical complication is the necessity of defining a
Hamiltonian for the Klein-Gordon equation which can be
accomplished by using a two-component formalism [11].
However, the interpretation of these sum rules in geomet-
rical terms is not as straightforward as in the nonrela-
tivistic case due to the presence of the negative energy
solutions to the one-body Klein-Gordon equation.

It is easiest to see how the situation is complicated by
considering the case where the potential is chosen such
that only bound states occur. The longitudinal response
for this case is

RL(q, ν) =
∑

f

(ν + 2E0)2

4E0Ef
|Ff0(q)|2

× (δ(ν+ E0− Ef )−δ(ν+ E0 + Ef )) , (19)

where the presence of positive and negative energy contri-
butions is explicit.

Figures 4, 5 and 6 show the numerical calculation of
the first three EWSR of this response for the case where
the potential is a linear confining potential. This results
in wave functions that are identical to the nonrelativistic
oscillator wave functions. In these figures the positive and
negative energy contributions are displayed separately.
Figure 4 represents S0. The total contribution of both pos-
itive and negative contributions (dashed line) has the con-
stant value of 1, as would be expected since this sum rule
is the Coulomb sum rule and should be equal to the square
of the charge. Note, however, that this is made up of a pos-
itive energy contribution (solid line) and a negative energy
contribution (dash-dotted line) of opposite signs. Both
contributions increase in magnitude with q. For compari-
son, the positive energy contribution of the PWIA (dash–
triple-dotted line) is included and can be seen to approach
the positive energy oscillator result with increasing q.
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Fig. 4. Positive and negative energy contributions to the
Coulomb sum rule for the relativistic oscillator model.

Fig. 5. Positive and negative energy contributions to the av-
erage energy transfer for the relativistic oscillator model.

Figure 5 shows the contribution to S1 = 〈ν〉. Here the
solid lines represent Q2 = 0 and the dash-dotted lines are
the positive and negative energy contributions to the aver-
age value of ν. The positive energy contribution is centered
in the spacelike region, while the negative energy contri-
bution is centered in the negative energy timelike region.
In both cases, 〈ν〉 becomes linear at larger values of q and

Fig. 6. Positive and negative energy contributions to the
mean-square width of the response in the relativistic oscilla-
tor model.

becomes parallel to the light cone. The positive energy
contribution for the PWIA is also shown and, except for
small values of q, is close to the oscillator result.

Figure 6 shows the mean-square widths of the positive
(solid line) and negative energy (dash-dotted line) con-
tributions. In both cases the width approaches the same
constant value as does the positive energy PWIA (dashed
line).

These figures indicate that the positions of the posi-
tive and negative energy peaks move in opposite directions
as q increases, while the widths of the peaks approach the
same constant value. The areas under these peaks increase
in magnitude linearly for large q with the positive energy
contribution being positive and the negative being nega-
tive. The y-scaling variable can be chosen to either fix the
position of the positive or negative energy peaks, but not
both. Since the negative energy contribution is clearly not
physical, we will choose this variable to fix the position of
the positive energy peak. The scaling function must also
be chosen such that the area of the positive energy peak
to the structure function is fixed.

A y-scaling variable can be obtained by considering
the response of a relativistic gas of particles in analogy to
the nonrelativistic case. This leads to the variable [12]

y = ν

√
1 +

4m2

q2 − ν2
− q . (20)

Note that this maps the interval −∞ < y < ∞ onto
the spacelike region. It should be mentioned that if a sys-
tem displays y-scaling at fixed q then it will also display
x-scaling at fixed Q2. Indeed, there is a direct relationship
between y and x variables and the y-variable used here cor-
responds to the x-variable derived by Barbieri et al. [13].
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Fig. 7. Scaling function for the relativistic oscillator model for
a range of momentum transfers.

Fig. 8. Scaling function for the relativistic square well model
for a range of momentum transfers.

The scaling function appropriate to the Klein-Gordon
equation is the longitudinal contribution to qW2 [10] which
gives

F(q, y) = q
(q2 − ν2)2

q4
RL(q, ν(q, y)) . (21)

Figure 7 shows the scaling function for the relativis-
tic oscillator for a variety of momentum transfers. The
asymptotic result is shown as a solid line. This clearly
shows the qualitative features of Bloom-Gilman duality,
however the approach to scaling is slower than in the non-
relativistic case. Note that the scaling function is peaked
at approximately y = −0.5 GeV rather than at y = 0 as
in the nonrelativistic case. This is largely the result of the
q- and ν-dependent factors in the definition of the scaling
function.

Figure 8 shows the scaling function for a relativistic
infinite spherical well potential. Again the qualitative

features of duality appear although the rate of approach to
scaling is somewhat faster. This suggests that scaling is a
feature of this model but the rate of scaling depends upon
the dynamics associated with the choice of the potential.

5 Summary

We have examined two simple models, one nonrelativistic
and one relativistic, that scale and have the qualitative
features of Bloom-Gilman duality. These models contain
only bound states and are not asymptotically free in the
sense of perturbative QCD. This suggests that scaling and
duality are more general features of quantum mechanics
and are not necessarily associated with QCD. However,
the dynamics of QCD should affect the rate at which
scaling and duality occur. By showing that duality and
scaling are not necessarily associated with QCD, these
models make Bloom-Gilman duality appear considerably
less miraculous.

We are currently extending these calculations to a
one-particle Dirac equation and are exploring the general
conditions under which scaling should occur in potential
models.
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